
СИСТЕМЫ И
ПРОЦЕССЫ
УПРАВЛЕНИЯ
UDС 004.413.5
OVERVIEW AND ANALYSIS OF METHODS
FOR EVALUATING SOFTWARE
AT THE DESIGN STAGE
GRUZDO I.V., KYRYCHENKO I.V.,
TERESHCHENKO G.Y.
Analyzes the existing solutions used in the evaluation of
software (software) at the design stage, which can reduce
a number of problems encountered during development.
The issues and problems of software evaluation at the
design stage, which are used in the development
management process, are considered. Methods for
evaluating software at the design stage are discussed and
a reasonable assessment is made of the appropriateness of
their use.
Key words: software, software, quality, software
evaluation, standards, method, algorithm, type of project.
1. Introduction
To reduce the risks of not completing a software
project, special attention is paid to the quality of
both the developed software and its development
process. Because of this, the tasks related to
software evaluation throughout its entire life cycle
(LC) are of particular relevance. Therefore, special
attention should be paid to the quality assessment of
the software at the design stage, since not only the
quality but also the project risks depend on it same
and cost.
Software quality (software quality) – the entire
volume of features and characteristics of software,
which refers to the ability to meet established or
perceived needs.
It should be borne in mind that the importance of
each quality characteristic varies depending on the
software class, web, desktop, mobile application or
cross-platform. It should also be remembered that
often on a project, the importance of each quality
characteristic varies depending on the constraints
adopted in the project, and depending on the
decisions of the project manager or team in relation
to the project and the team involved in the design
and development of the project.
Therefore, taking into account the above, a
significant role is played by the balance between a
number of variable characteristics that affect the
quality as a whole. It should be noted that the
following resources affect the quality of software:
human, material, hardware and time resources. You
should also not forget about the importance of the
adopted design constraints for various classes of
software. Therefore, when organizing a software
development management process, special attention

should be paid to the accumulation of information
and analysis of the interrelationships of factors and
the results obtained, as well as the influence of
decisions taken at the software design stage on the
success of the entire project and its quality,
completeness and popularity among users.
The above circumstances determine the relevance of
the task of studying existing software evaluation
methods at the design stage, namely, statistical
evaluation methods. All this will allow a more
conscious approach to the choice of methods,
relying not only on accepted standards for
developing projects, but also on a particular class of
software using statistical prerequisites to improve its
quality.
The purpose of the article is to analyze existing
software evaluation solutions at the design stage,
analyze the most frequently used statistical software
evaluation methods, as well as substantiate the
choice of a solution depending on the specific
software class and the subtasks to be solved.
2. Problems of Software Evaluation at the Design
Stage
The software evaluation process consists of three
stages: the establishment (definition) of quality
requirements, the preparation for the assessment and
the assessment procedure, as well as the selection of
the main characteristics for use in subsequent
projects as statistical prediction prerequisites. This
process can be applied in any suitable life cycle
phase for each software component.
Software evaluation problems that may arise at the
design stage: 1) the subject area may not be well
understood by the developers and / or customers due
to the fact that some facts are missed or distorted; 2)
insufficient or complete lack of statistical data or
experience of the project manager in the
development of a project of a specific type, which
makes it impossible to create a basis for software
evaluations in the future; 3) ignorance of the
standards with which you can perform the evaluation
process or their complete disregard in the process of
software design and development, resulting in a
decrease in software quality and a lack of knowledge
in the conduct of the evaluation process; 4) poorly
documented and described requirements at the
beginning of the project, lack of specification; 5) a
complete discrepancy in understanding the
requirements between the project manager, the team
lead, the people involved in the project and the
customer; 6) a complete discrepancy in
understanding the purpose of software development
between the project manager, team lead, the people
involved in the project and the customer; 7) at the
design stage of the software, errors are either hidden
or overlooked, as a result of which a false
impression is created about important characteristics
affecting the quality of the software; 8) the quality of

R&I, 2019, №2 9

assessment is highly dependent on the subjects and
their experience involved in the assessment process;
9) the project manager, team leads, developers,
analysts, testers, and those who embed the product
may have different ideas about the assessment
processes and software improvement opportunities;
10) the choice of the main quality characteristics for
use as statistical prerequisites of the forecast in
subsequent projects is not sufficiently substantiated.
Most of the problems that arise during the software
design phase reduce the use of historical data
accumulated, namely, the analysis of the main
characteristics that make it possible to compare the
complexity of a project with the complexity of
previous projects of a similar type, size, orientation
and human composition.
However, it is not always possible to apply for a new
project, only if a number of conditions are met: 0)
the real results of previous projects are accurately
documented in the company; 1) the selected
characteristics of software quality for documentation
remain unchanged for different projects and within
the adopted restrictions on the project, as well as
most fully and briefly describe the decisions made
and their impact on the project; 2) at least one of the
previous projects, and preferably some belong to the
corresponding software class (web, desktop or
mobile application) or cross-platform software that
was previously developed; 3) at least one of the
previous projects, and preferably several have a
similar substantive focus and size; 4) Life cycle, the
used methodology, methods and development tools,
qualifications and experience of the project team of
the new project are also similar to those that
occurred in previous projects; 5) are developed using
the same programming language and are based on
the same design patterns as similar, archival
projects; 6) have in their composition the same or
similar functions that in the complex perform similar
calculations.
Independent software assessments at the design
stage in most cases are performed by people who do
not always take into account the relationship
between software quality and the development team
and resources that are on the project, which in turn
leads to erroneous results and is impractical.
Given the above, the most appropriate practice is
that when the project manager, together with the
architect, the team lead on the development and
testing, in the analysis process, perform several
iterations in assessing the necessary resources
affecting the quality of the entire software. It is also
necessary to pay attention to the processes of
identifying and describing problems associated with
the evaluation of software that may arise at the
design stage.

3. Software Evaluation Methods at the Design
Stage and Their Classification
A special place in the process of evaluating software
quality is represented by software assessment
methods at the design stage. The classification of
methods according to Vendrov [1] is given in Table
1.

Table 1
№ Title Short description
1 Algorithmic

modeling
based on the analysis of statistical
data on previously completed
projects, often determined by the
dependence of the complexity of
the project from a quantitative
measure of software. At first, the
selected quantitative indicator for
software is evaluated, and then
future costs are predicted using
the model.

2 Expert
ratings

firstly, a survey is conducted of
several experts on software
development technology who
know the scope of the software
being developed. Each of the
experts gives his assessment of
this project. All ratings are
compared and discussed. The
process is repeated until
agreement is reached on the final
decision-making and estimates.

3 Evaluation
by analogy

is used if such software has
already been implemented
previously and there is complete
information about it. The planned
software is compared with
previous projects with similar
characteristics. Experts give a
likely assessment of the
complexity, based on the
differences between the new and
previous projects.

4 Parkinson's
Law

according to this “law”, the efforts
spent on work are distributed
evenly over the time allotted for
the project. Here, the criteria for
estimating project costs are human
resources, and not the target
assessment of the software
product itself.

5 Evaluation
in order to

win the
contract

project costs are determined by
the availability of those funds that
are available to the customer.
Therefore, the complexity of the
project depends on the budget of
the customer, and not on the
functional characteristics of the
product being created.
Requirements have to be changed
so as not to go beyond the adopted
budget.

10 R&I, 2019, №2

Each of the above software evaluation methods has
weaknesses and strengths; therefore, to improve the
quality of software, it is advisable to apply several
assessment methods simultaneously for their
subsequent comparison and estimation of the motion
vector and achieving the required quality. In the case
when in the course of the analysis completely
different results are obtained, it is possible to judge
that there is not enough information to obtain a more
accurate assessment, or the wrong characteristics
were selected within the framework of the designed
software. In this case, you need to use additional
information, or choose more indicative criteria, after
which you should perform a reassessment, and so
on, until the results of different methods become
close enough.
Given the above, we can conclude that the project
was successful, you must most accurately perform
an assessment of the complexity of the project.
Therefore, it is necessary to take into account the
main characteristics affecting the assessment of the
complexity of software development at the design
stage. However, they must meet the following
characteristics [1]:
1) characteristics should be created and maintained
by the project manager and the teams of architects,
developers and testers responsible for carrying out
the work;
2) is perceived by all performers equally and as an
ambitious, but achievable task;
3) based on a detailed and well-founded assessment
model;
4) based on data from similar projects, which
include similar processes, technologies,
environment, quality requirements and qualifications
of employees;
5) has the same or similar data for the calculated /
forecast models;
6) be described in detail so that all key risk
characteristics are visible, and the probability of
success is objectively evaluated.
There are both theoretical and statistical models for
calculating the complexity of software development.
All of them are based on the general classification of
software methods according to Vendrov.
The most well-known and applied in practice: a
method for analyzing the complexity of a project
based on the complexity of a known sample [4];
analysis of labor intensity based on expert
assessments [1]; assessment of the cost and size of
software depending on the stage of the project [4, 5
6]; algorithmic modeling of the complexity of
software development based on the class of models
COCOMO [1, 5, 7-10]; methodology for assessing
the complexity of software development based on
use cases [11]. Consider them in more detail in
paragraph 2 of this article.

Most of the existing models for determining the
complexity of software development can be reduced
to the relationship of five parameters:
1) the size of the final product, which is usually
measured by the number of lines of source code or
the number of functional points necessary to
implement this functionality;
2) features of the process used to obtain the final
product, in particular its ability to avoid
unproductive activities;
3) the capabilities of the staff involved in software
development, in particular his professional
experience and knowledge of the project domain;
4) an environment that consists of the tools and
methods used to effectively perform software
development and automate the process;
5) the required quality of the product, including its
functionality, performance, reliability and
adaptability.
The relationship between the parameters can be
summarized as a formula:
Workload = (Personnel) • (Environment) • (Quality)
• Code Size / Software).
Among all the parameters in the classical literature,
the most significant factor for evaluating the
complexity is the size of the software.
The procedure for assessing the complexity of
software development in general consists of the
following actions [2]:
1) an estimate of the size of the product being
developed;
2) an assessment of labor input in man-months or
man-hours;
3) an estimate of the duration of the project in
calendar months;
4) project cost estimate.
Back in the 1970s, Lawrence Putnam [8], using
statistical analysis of projects, found that the
relationship between the three main project
parameters (size, time, and labor-intensiveness)
resembles the Norden-Rayleigh function, reflecting
the distribution of project labor resources over time.
Rayleigh function [8]:

).atexp(*t*a*K*2
dt
dy 2−=

,
where

dt
dy – growth rate of project staff; t is the time

elapsed from the start of the project to withdrawal of
the product from operation; K - the area under the
curve – represents the full complexity during the
entire life cycle, expressed in man-years; a is the
acceleration factor (constant), defined as [8]:

2
dt2

1a = ,

where dt – development time.

R&I, 2019, №2 11

Taking a number of assumptions, Putnam derived
the equation [8]:

,
)t(

1*)
C
S(*4,0E 4

d

3=

where E is the complexity of software development,
S is the size of the software in LOC, dt -planned
development time, C - technological factor, taking
into account various hardware limitations, staff
experience and characteristics of the programming
environment.
The second directions in the use of statistical models
are those that use accumulated historical data to
obtain values for the coefficients of the model. There
are two directions: linear and nonlinear.
Linear statistical models are expressed in the form:

∑
=

+=
n

1i
ii0 x*bbessLaboriousn ,

where Xi are factors that influence labor intensity,
Bj are model coefficients.
In practice, linear models do not work too well,
because the relationship between labor-intensiveness
and software size is non-linear. As the size of the
software grows, an exponential negative scale effect
occurs.
Nonlinear, statistical models are as follows:

b)zeSoftwaresi(*Aesslaboriousn = ,
where A is a combination of factors affecting the
complexity; b is the exponential scale factor.
Estimation of product size is based on knowledge of
system requirements. For such an assessment, there
are two main ways: by analogy and by calculating
the size of certain algorithms based on the original
data.
The base among all indicators is the labor input
indicator [2]:

c*qQ = ,
where Q is the conditional number of teams, q is a
coefficient that takes into account the conditional
number of commands, depending on the type of
task, is calculated in a table, c is a coefficient that
takes into account the novelty and complexity of the
program, and is determined in the same way.
Then the time to create software is calculated. The
total time to create software is made up of various
components. The structure of the total time to create
software is calculated [3] depending on the time
needed for a particular development stage.
The time spent at each stage of software creation is
calculated according to the following algorithm:
1) TPO – time for preparing the description of the
task, varies from 3 to 5 days, 8 hours each: person /
hour.
2) TO – the time for the description of the task is
determined by the formula:

)K*50/(B*QТо = men/hour ,
where B is the coefficient for accounting for changes
in the task, depends on the complexity of the task
and the number of changes; K - coefficient taking
into account the qualifications of the programmer,
depending on the length of service.
3) Ta is the time for the development of the
algorithm; we count by the formula:

)K*50/(QТа = men/hour
4) Tbs - the time to develop a flowchart is defined as
the same as Ta.
5) Tn - the time of writing a program in a
programminglanguage is determined by the formula:

)K*50/(5,1*QТn = men/hour
6) TP - time "set" of the program is determined by
the formula:

50/QТp =
 men/hour

7) Tom - the time for debugging and testing the
program is determined by the formula:

)K*50/(2,4*QТот = men/hour
8) Td - time for registration of documentation, is
taken after the fact and is from 3 to 5 days for 8
hours:

Тd = men/hour.
Total labor costs are calculated as the sum of the
composite labor costs according to the formula:

ТdТотТpТnТbcТаТоТpоТ +++++++=
 It can be concluded that statistical models are easy to

understand, but have the following disadvantage: the
results are valid mainly for a specific situation. Also,
as the number of input parameters increases, the
amount of data needed to calibrate the model also
increases.
4. Review and Analysis of the Most Used
Software Evaluation Methods at the Design Stage
4.1 Method analysis of the complexity of the project
on the basis of the complexity of a known sample can
be represented as an algorithm:
1) As the value of the complexity of the main work
choose data characterizing the complexity of the
same software.
2) Regarding similar software, a coefficient of
complexity of a new development or part of it is
introduced.
3) Calculate the complexity of the program-analogue
or its separate part.
4) Determine the qualification ratio of the employee
(programmer, tester, etc.), which reflects the degree
of his preparedness to perform the work assigned to
him.
5) Calculates the complexity of manufacturing new
software or its individual modules according to the
formula [4]:

12 R&I, 2019, №2

kv

skl
a

inew
i n

nqq ⋅
=

6) Determine the time of execution of all work, or
work within individual stages. In the classic
management is divided into time intervals: the
development of a general scheme of the software,
writing software, testing and making corrections, as
well as writing the supporting documentation.
7) Calculate the labor costs for a specific stage [4]:

doc
i

test
i

al
i

prog
ii qqqqq +++=

,

where
prog
iq - labor costs and software

manufacturing,
al
iq - algorithmization costs,

test
iq -

labor costs for testing and making corrections are
determined by the amount of labor costs for the
implementation of each component of this work,

doc
iq - the cost of writing documentation reflect the

ratio of labor costs for the creation of supporting
documentation in relation to the labor costs of
software development.
8) Definition of labor costs for the stages of a project
or a project as a whole:

)qnnn1(qq doc
i

cor
i

t
i

al
i

prog
ii ++++=

9) Definition of labor costs for software design:

Тоcta

iprog
i nnn1n

qq
++++

=

Labor costs for the introduction of new software 0q
depends on the time for the implementation of trial
operation, which is agreed with the customer and,
often by Scrum is equal to the 1st sprint or one
month or 22 man-days. At the same time it is
necessary to take into account the risks associated
with personnel, namely, illness, unplanned meetings,
etc. etc. as they take productive staff time.
10) Calculate the total value of labor for the project:

0prp qQQ +=

A complete list of works with their separation by
project implementation stages is sometimes drawn
up in the form of a design complexity calculation
table, which reflects the content of the project work
depending on the specific development stage.
This method of calculating the complexity of the
design, gives a more complete picture of the attitude
to the stages of project development and will take
into account the possible risks, because more
approximate gives adequate estimates. Also, the
software correction factor allows you to operate with
values when the amount of work increases. During
the determination of labor input for each stage of
work, it allows to correlate the labor intensity of the
main work with the laboriousness of other types of

work, which in turn makes it possible to calculate
the costs corresponding to real conditions.
4.2 Analysis of the complexity on the basis of expert
estimates
Carrying out the analysis of labor intensity on the
basis of expert assessments, it is necessary to select
experts at the beginning within the solvable domain
of the software. Algorithmically, the method is as
follows:
1) Survey a few experts.
2) Assignment of weights to each of the experts,
depending on the position held and work experience.
3) The results recorded in the table (see table 2.)

Table 2
Specifications Weight Tmin Tavr Tmax

 0,25
 0,05
 …

General
4) On the basis of the received expert estimates, the
definition of the duration of each work (stage of
work) for the project (minimum, average and
maximum duration of work).
5) The definition of the integral assessment and
development of a generalized table.
6) The definition of the expected duration of work
qi, calculated as the expectation for β - distribution
by the formula [1]:

5
TT2T3q

i
max

i
avr

i
min

i
++

= ,

where Tmin и Tmax- min. and max. work duration, and
Tavr - the average duration of work, according to
expert estimates.
This method is very good in the case when experts
have experience in developing such projects, and
when the level of expert in the team corresponds to
its professionalism, although there are cases when
the middle knows more than the leader. The
weakness of the method lies in the fact that the
degree of similarity of the new project and the
previous ones, as a rule, is not too great if the
company develops different classes and orientation
of the software and the company has frequent staff
turnover.
4.3 Estimation of cost and software size depending
on the project stage.
The accuracy of estimating the cost and size of
software depending on the stage of the project is
determined using the schedule [4]. This method uses
software size measurements using the number of
lines of code and function points metrics.
4.3.1 Number of lines of code (LOC - Lines of Code)
is one of the most common units of measurement.
However, it contains a number of subjective

R&I, 2019, №2 13

assessments that affect the result, since different
values can be obtained on the same data.
Algorithm LOC.
1) Calculation of the expected value of the
assessment:

6
LOC4LOCLOC

LOC possibleworstbest
ectedexp

++
= .

2) Calculate performance values:
)LOC/LOC(*PrPr ectedexpaverageaverage= .

3) Determination of total software costs:
averageectedexp Pr/)LOC(З = .

4) Project cost estimate:
averageectedexp UdSт/)LOC(Cm =

.
The advantages of using LOC are as follows:
easy adaptability; the ability to compare methods of
measuring size and performance in different groups
of developers; ease of evaluation before project
completion; Estimation of software size based on the
developer’s point of view.
Although in practice this metric is often used, it has
several drawbacks: it is difficult to estimate the size
of software in the early stages of development; not
regulated by standards; Possible distortion of LOC
indicators by a programmer to get more salary.
Similarly, the relationship between LOC and the
effort expended is not linear.
Despite all the shortcomings of this method, it is
advisable to use it in combination with other
indicators, which allows you to get a rough estimate
that will display values close to real results.
4.3.2 Function Point Calculation (FP - Function
Points), used to estimate the resources required for
software development and maintenance.
The counting of functional points can be represented
as a sequence of steps [6]:
1) Determination of the type of assessment
performed: development project, development
project, product.
2) Determination of the scope and boundaries of the
product: all developed functions or all added,
modified and deleted functions; only functions
actually used, or all functions.
3) Determining the number and complexity of
functional types by data. It is determined based on
“entity-relationship” diagrams or class diagrams. For
each identified functional type, its complexity is
determined. It depends on the number of elementary
data (data element types, DET) and elementary
records (record element types, RET) associated with
this functional type.
The dependence of the complexity of functional
types on the number of DET and RET is determined
by the table "The complexity of ILF and EIF" [6].

4) Calculation of function points associated with
transactions. The number of transactional functional
types is determined on the basis of identifying input
and output documents, screen forms, reports, and
also by class diagrams.
It should be noted that there are a number of rules
that must be followed when calculating DET for EI
and calculating DET for EO.
5) The determination of the total number of non-
aligned functional points (UFP) is determined by
summing over all information objects (ILF, EIF) and
elementary operations (EI, EO, EQ transactions).

∑∑∑∑∑ ++++=
EQEOEIEIFILF

UFPiUFPiUFPiUFPiUFPiUFP

6) The definition of the equalization factor (VAF)
value is applied when system-wide requirements are
imposed on software that limit developers to choose
a solution and increase the complexity of
development. The value of the factor VAF depends
on the 14 parameters that determine the system
characteristics of the product.
The calculation of the equalization factor is made
according to the formula [6]:

65.0)01.0*TDI(VAF += .
For each functional type, the number of functional
points included in its composition is calculated. The
calculation is performed in accordance with the
values from the table showing the dependence of the
amount of FP on the complexity.
7) Calculate the number of aligned functional points
(AFP). The initial estimate of the number of aligned
functional points for software is determined by the
following formula [6]:

VAF*UFPAFP = .
This assessment takes into account only the new
functionality that is implemented in the software. A
software development project is evaluated at a DFP
(development functional point) using the formula:

,VAF*)CFPUFP(DFP +=
where CFP (conversion functional point) -
functional points calculated for the additional
functionality that will be required when installing
the software.
The project of improvement and improvement of the
product is estimated at the EFP (enhancement
functional point) by the formula:

),VAFB*DEL(VAFA*)CFPCHGAADD(EFP +++=
where ADD - functional points for added
functionality; CHGA - functional points for
modified functions; VAFA - the value of the
equalization factor calculated after the completion of
the project; DEL is the amount of remote
functionality; VAFB - the value of the equalization
factor calculated before the start of the project.
The expediency of using functional points is due to
the fact that the measurements do not depend on the

14 R&I, 2019, №2

technological platform on which the product will be
developed. At the same time, a significant advantage
is the fact that a uniform approach to the evaluation
of all projects in the company is ensured. It is also
necessary to store statistical data on labor costs for
the implementation of functional points for
previously implemented projects.
4.4 Algorithmic modeling of software development
based on the class of models COCOMO
Constructive COst Model - a constructive cost
model developed by Barry Boehm is one of the most
well-known and well-documented models for
estimating the complexity of software development.
It includes different approaches for different classes
of software and development methodologies.
COCOMO estimated equations [8]:

1P
1)Siz(*EAF*CW = ;

2P
2)W(*CT = ,

where W is the number of work person-months C1 -
the scaling factor. EAF is a clarifying factor
characterizing the subject area, personnel,
environment and tools used to create software. Siz -
the size of the final product. P1 is an exponent
characterizing economies of scale. T is the total
number of months. C2 - scaling factor for the timing
of execution. P2 is an exponent that characterizes
inertia and parallelization inherent in software
development management.
The basic equation of COCOMO:

bb
b)CKLо(*аЕ = ;

bd)E(bcT =
; T/ENd =

where E - the complexity of software development
in person-months; KLoC - estimated program size in
thousands of lines of source code; T - development
time / duration, in months; Nd - the number of
developers in people. The coefficients ab and
exponent bb are taken from the table.
Formula COCOMO for the average level [8]:

Rf*)CKLо(*аЕ bb
b= ,

where Rf is the regulatory factor.
The detailed level (Advanced COCOMO) is aimed
at improving the accuracy of assessment due to the
hierarchical decomposition of the software being
created and taking into account the cost factors at
each level of the hierarchy and in phases of work
[8]. Allows you to perform software evaluation by
introducing additional factors.
COCOMO for software production by assembling
reusable components for:
- simple project - for small development teams

M*05.1)CKLо(*4.2Е =
The multiplier M consists of: reliability and software
complexity level, reusable components,
development platform complexity, staff capabilities,
staff experience, work schedules and support tools.
The advantages of this approach are that it is

possible to calculate, by combining the values, more
detailed indicators that are used at the post-
architectural level.
- medium complexity - in the development of which
team members may feel a lack of experience and
knowledge of the relevant systems

M*12.1)CKLо(*3Е =
- an embedded system project, where the software is
part of a complex of hardware and software, other
technical mechanisms and devices

M*20.1)CKLо(*6.3Е =
COCOMO II is a more advanced metric for
calculating the complexity of a project used in multi-
component development [9].
Labor input (in person-months):

,EMCKLоaE
n

1i
t

E
NS ∏

=

××=

where ,SF01,0BE
5

1j
j∏

=

×+=

Calendar time:
,)E(CTDEV F

NSNS ×=
where

),BE(2,0DSF01,02,0DF
1j

j −×+=××+= ∑
=

EMt - multiplicative coefficients of labor; SFj -
exponential scale factors; KLoC - software size
expressed in thousands of lines of source code or the
number of function points without taking into
account correction factors (UFP). coefficients EMt
reflect the combined effect of parameters.
The estimated process maturity level (EPML) is
calculated as follows:

,
n
1)

100
%KPA(5EMPL

n

1i

i ××= ∑
=

where the value of KPA% is determined tabularly.
COCOMO II for multicomponent development [8,
9].
1) The total size of the product is calculated as the
sum of the sizes of its components:

∑
=

=
N

1k
k

a CKLоCKLо .

2) The basic complexity of the project is calculated
by the formula:

SCED*)CKLо(*aE Eab = ,
where SCED is the schedule compression.
3) Then the basic labor intensity of each component
is calculated:

a
kEb

k
CKLо
CKLо*EE = .

R&I, 2019, №2 15

4) In the next step, an estimate of the complexity of
the components is calculated taking into account all
the factors of labor intensity, except for the SCED
factor.

∏
=

=′
6

1i
i

b
kk EM*EE .

5) The total complexity of the project is determined
by the formula:

k

N

1k
MEE ′= ∑

=
.

The project duration in the COCOMO II method is
calculated by the formula:

100
SCED*)E(*CTDEV

B
10j jSP*01.0*2.0D

NS
∑ =+

= ,

where C = 3.67; D = 0,28; - the complexity of the
project without taking into account the SCED
multiplier, which determines the schedule
compression.
SOSOMO II is actively used in the Rational Unified
Process technology and is constantly evolving.
SOSOMO Agile is a light version of SOSOMO II
adapted for software development according to the
Agile methodology. The technique is as follows
[10]:
1) set the complexity of the previous completed
project to a metric or as the final cost of the project;
2) the characteristic of SOSOMO of the previous
completed project is set;
3) the characteristics of the SOSOMO new project
are assumed.
4) the labor intensity and cost of the new project are
calculated as deviations from the values of the
previous one.
This technique works well with Agile projects.
As advantages of SOSOMO, it can be noted that
actual data are used. The method is repeatable and
fairly universal, well suited for projects that are not
very different in size, complexity, and is quite
simple. The disadvantages include the fact that the
variability of requirements is poorly taken into
account, the skills and knowledge of the customer,
as well as levels of staff interaction are ignored.
4.5. Methodology for assessing the complexity of
software development based on use cases
This technique is based on the identification of
actors and use cases. It consists of the following
basic steps [11]:
1) Determination of the weights of the actors. The
calculated number of actors of each type ni is
multiplied by the corresponding weighting factor
kai, after which the total weight indicator A is
calculated

А = ∑ ni × kai.

2) Determination of the weights of use cases. The
generic weight indicator UUCP (unadjusted use case
points) is calculated as:

.UCPAUUCP +=
3) Determination of the technical complexity of the
project (TCF - technical complexity factor) - is
calculated according to the table, taking into account
indicators of technical complexity. The TCF value is
calculated by the formula:

∑+=)).WeightT(*01,0(6,0TCF ii

4) Determination of the level of qualifications of
developers (EF - environmental factor) is calculated
taking into account the weights of the table.
The value of EF is calculated by the following
formula:

)).WeightF(*03,0(4,1EF ii∑−+=

5) Evaluation of the complexity of the project. UCP
end value (use case points):

EF*TCF*UUCPUCP =
Using this method in the work of an IT company,
you can achieve the desired results, regardless of the
complexity of the software being developed, since
all the essential characteristics are embedded in this
model.
4. Conclusions
1) The analysis of the current state of the software
evaluation problem at the design stage, which is
used today in the management of the development,
was performed. During the analysis, the importance
of performing a preliminary assessment of the
software was determined before embarking on its
implementation, since This allows you to evaluate
the software before it starts, which in turn allows
you to take into account most of the possible risks of
the project and the development stages. In turn, this
allows you to compare what costs are necessary and
calculate the cost of the project.
2) Issues and problems of software evaluation at the
design stage, which are used in the development
management process, are considered. The
conclusion was made that the use of accumulated
historical data allows to reduce the problems arising
at the software design stage and thereby improve the
quality of the final software.
3) Methods for evaluating software at the design
stage are discussed and a reasonable assessment is
made of the appropriateness of their use. When
evaluating software at the design stage for
improving the quality, it is advisable to use several
evaluation methods for their subsequent comparison,
since this will allow to achieve the required quality.
If the result is completely different results, it means
that there is not enough information to obtain a more
accurate assessment, or the wrong characteristics
were selected within the framework of the designed

16 R&I, 2019, №2

software. In this case, you need to use additional
information, or choose more indicative criteria and
then repeat the assessment, and so on until the
results of the various methods become close enough.
The obtained results will allow to continue the work
on solving the problem of choosing the metrics for
software evaluation used in the development of
software projects on the entire life cycle.
Further studies are related to the analysis of existing
software development standards that support the
assessment of software quality and reliability,
among which special attention should be paid to the
documents of the IEEE 982 series, ISO / IEC 9126,
DSTU 28195, RUP.
Transliterated bibliography:
1. Vendrov A .M. Designing software of economic
information systems: Textbook. M.: Finance and
Statistics, 2006. 544 p.
2. Burlak G. N. Blagodatskikh V. A. Economic aspects of
the development and use of software. M.: MESI, 1990.
102 p.
3. It can be used to make it easier to change the cost of the
product. Http://www.doklad.ru/view/WDusdgI-tCE.html
4. Kuldin S. P. Genetic development with the quality
requirements // Applied Informatics. 2010. №5. 30-42 p.
URL: https://cyberleninka.ru/ article / n / geneticheskiy-
podhod-k-probleme-otsenki-sro kov-i-trudoemkosti-
razrabotki-programmnogo-obespe cheniya-s-zadannymi-
trebovaniyami-k.
5. Sidorov N. A., Batsenko D. V., Vasilenko Yu. N.,
Shchebetin Yu. V., Ivanova L. N. Methods and tools for
estimating the cost of software. Collection of scientific
works "problems of system benefits in economics". NAU
2004. №7. 113-118 p.
6. Arkhipenkov S. Lectures on software project
management [Electronic resource] access mode -
http://citforum.ru/SE/project/arkhipenkov_lectures /

7. Bitkovsky D. I., Motorko A. V. Application of the
СOCOMO model in the economics of software
engineering // Economics and Business: Theory and
Practice, no. 4-2, 2017, pp. 11-14.
8. Fatrell R., Schafer D., Schafer L. At the minimum cost:
Trans. from English. M.: Williams, Moscow -
St. Petersburg-Kiev, 2004, 1136 p.
9. COCOMO Assessment Tool [Electronic resource] -
Access mode http://www.softstarsystems.com/index .html
10. Sharman G. Agile COCOMOII [Electronic resource] /
G. Sharman. CSE Annual Research Review. 2003. March
17-21. access mode - http://sunset.usc.edu/events / 2003 /
March_2003 / Agile_COCOMOII_ARR.pdf
11. Use Case Points [Electronic resource]
http://www.bfpug.com.br/Artigos/UCP/Banerjee- UCP_
An_Estimation_Approach.pdf.

Поступила в редколлегию 21.06.2019
Рецензент: д-р техн. наук, проф. Шаронова Н.В.

Gruzdo Iryna, Candidate of Technical Sciences, Senior
Lecturer of the Department of Software Engineering,
Kharkov National University of Radio Electronics.
Scientific Interests: aerospace engineering, cybernetic
linguistics, models and methods of risk management,
Soft-skils. Address: Ukraine, 61166, Kharkiv, Nauka
Ave., 14, Phone/fax: +380577021446,
e-mail: irina.gruzdo@nure.ua.
Kyrychenko Iryna, Candidate of Technical Sciences,
Assistant of the Department of Software Engineering,
Kharkov National University of Radio Electronics.
Scientific Interests: ERP systems, models and methods of
risk management. Address: Ukraine, 61166, Kharkiv,
Nauka Ave., 14, Phone/fax: +380503110317,
e-mail: iryna.kyrychenko@nure.ua.
Tereshchenko Glib, Graduate student of the Department
of Software Engineering, Kharkov National University of
Radio Electronics. Scientific Interests: blokchain
technology, ERP systems, models and methods of risk
management. Address: Ukraine, 61166, Kharkiv, Nauka
Ave., 14, Phone/fax: +380675707102,
e-mail: hlib.tereshchenko@nure.ua.

R&I, 2019, №2 17

http://www.bfpug.com.br/Artigos/UCP/Banerjee-%20UCP_%20An_Estimation_Approach.pdf
http://www.bfpug.com.br/Artigos/UCP/Banerjee-%20UCP_%20An_Estimation_Approach.pdf
mailto:irina.gruzdo@nure.ua
mailto:iryna.kyrychenko@nure.ua
mailto:hlib.tereshchenko@nure.ua

